Marine Microbiology in the Oligotrophic Ocean

SMILE High School Teacher Workshop Giovannoni Lab August 5th, 2019

Oregon State University

Expected Learning Outcomes

- The ocean is the largest biome on Earth and it is full of life.
 - Microorganisms are the most abundant and important inhabitants of the ocean.
 - Microbes are diverse (size, shape, and function)
- Microbes form ecosystems where their interactions impact global processes, including the carbon cycle.
- We can use models to study and conduct experiments on global processes such as the carbon cycle.

Outline of Lesson

- Marine Microbiology and Carbon Cycle introduction presentation
 - **Expert Groups**
 - Modeling presentation
- Explain Oligotrophic Simulation
- Oligotrophic Simulation 1, 2, and 3
- Conclusions

Beaufort Sea

Is the Earth BLUE or GREEN?

outh acific Atlantio

Indian Ocean

2007 Geology.com

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image IBCAO Image © 2011 DigitalGlobe © 2011 Cnes/Spot Image

GOOGLE"

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image IBCAO

02010Google^{*}

ß

70% of the Earth's surface is ocean The ocean is on average 4000m deep The majority of the ocean is oligotrophic Every drop of the ocean contains life!

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image IBCAO

02010 Google

What types of organisms live in the ocean?

Which types are most important to our planet?

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image IBCAO

02010 Google

Marine Bacteria

Image from Yanlin Zhao and Stephen C electron-microsco Seawater filtered on C

Fun Fact In 1 drop of seawater there are 1 million bacteria!

Marine Microbial Vocab!

Oligotrophic: an area of the ocean with low nutrient concentrations

Phytoplankton: -Create biomass from the sun (like plants) -<u>example:</u> *Prochlorococcus*

Bacterioplankton: -Use biomass produced by phytoplankton to survive -<u>example:</u> SAR11

Zooplankton: -Consume both phytoplankton and bacterioplankton

-example: copepod

SAR11 is the most abundant bacterioplankton

Discovered in the Giovannoni Lab at OSU

Prochlorococcus is an important phytoplankton

200 in a row = 1 human hair!

Marine microbes are small and diverse

Fig. 2. A comparison of the size range (maximum linear dimension) of phytoplankton relative to macroscopic objects.

Finkel et al., 2010

What are these marine microbes doing?

211.1

Why should we care about them?

50% of all oxygen we breathe is produced by microbes in the ocean!!

Photosynthesis by phytoplankton removes CO_2 from the atmosphere, and forms biomass and O_2 $CO_2 O_2$ $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

Zooplankton

Nutrients

Bacterioplankton

Respiration by heterotrophs uses biomass and O_2 , producing CO_2 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O_2$

Zooplankton

CO₂ **O**₂

Phytoplankton

Nutrients

Bacterioplankton

How is Oxygen produced if photosynthesis and respiration are balanced?

 $\begin{array}{c} C_{6}H_{12}O_{6} + 6O_{2} \rightarrow 6CO_{2} + 6H_{2}O \\ \hline \\ CO_{2}O_{2} \rightarrow 6CO_{2} + 6H_{2}O \rightarrow C_{6}H_{12}O_{6} + 6O_{2} \end{array}$

Phytoplankton

Nutrients

The Carbon Pump sequesters some fixed carbon, allowing net O₂ production and CO₂ removal

Carbon

Pump

Phytoplankton

 CO_2

Marine Microbial Interactions control the strength of the Carbon Pump!

Carbon

Pump

Phytoplankton

 CO_2

 \mathbf{D}_2

Why is there so much more O_2 in the atmosphere than CO_2 ?

Where do fossil fuels come from?

How is all of this related to global climate change?

The Great Oxidation Event

Effect of plate tectonics productive areas in the tropics and shallow seas

Mass carbon burial hypotheses

- This hypothesizes the locking up of more organic matter in sediments before they had a chance to decay.
- Prevalence of shallow seas in the Carboniferous Period
- Geological viewpoint production of clays able to absorb organic matter and preserve it between the seafloor and the assembly of a supercontinent whose weathering could stimulate ocean life by adding nutrients.
- Biological viewpoint arrival of lichens on land (also increasing weathering and the levels of nutrients in the ocean).

Shallow seas mean sinking carbon is buried faster, so less is respired during the sinking process

Over 100s of million years, buried carbon becomes fossil fuels!

Burning fossil fuels releases CO_2 from buried carbon, causing Atmospheric CO_2 Concentrations to Increase

Burning Buried Sunshine Today's average US gallon of gasoline requires approximately 90 metric tons of ancient plant matter as precursor material

What are these marine microbes doing?

211.1

Why should we care about them?

The Carbon Cycle

700

The ocean is a carbon sink.

 CO_2

phytoplankton

Marine microbes control how much carbon is absorbed in the ocean.

Understanding these microbial processes may be the key to understanding (and potentially mitigating) global climate change.

Sea floor

Marine Microbe and Carbon Cycle Expert Groups

Phototrophs

These are organisms that use photosynthesis to turn atmospheric carbon into their biomass.

Heterotrophs These are organisms that get energy by consuming biomass, it can be from debris or other organisms. Viruses These are non-living entities that use living organisms to make more copies of themselves!

How can we experiment with marine microbial ecology and the carbon cycle in the classroom?

How can we study racecars in the classroom?

Models can be used to study systems

Models use data to recreate actual systems

Models can be used to study the ocean!

Scientists use data to build models of marine ecosystems

anne de famin le alterioriet le alterioriet le alterioriet le alterioriet le alterioriet le alterioriet de la alteriorie

R How are the diverse marine microbes interacting in the environment?

How do microbial interactions move biomass between groups of organisms?

Set up

Give 20 cubes to each player of a single color

Pull out the sunlight

Shuffle all of the other cards together Set up

Give each player 3 cards

Set up

How to play:

Each turn, play 1 card from your hand so it connects to at least one other card. Put cubes of your color equal to the number on the card

When you play a card:

The arrow points to the cards that it effects. Take: Switch the cubes to you color and move it to you card. (Remember some can only take from certain others!)

Return: Give the cubes on the indicated card back to their player. To win, start your turn with 5 or less biomass (cubes).

Thank You

Questions? Feel free to email your questions to Chris Suffridge suffridc@oregonstate.edu

Oregon State University

Oligotrophic

Available now!

Oligotrophic is a fast-to-learn, strategic tile placement game where players compete to place biomass the fastest. In the game players will select and play hexagonal cards based on actual microorganisms to accumulate biomass, often getting bonuses, hurting, or taking biomass from the other organisms they encounter.

Use it as a fun way to teach about the ecology of globally significant marine microorganism!

Free to download at: <u>https://boardgamegeek.com/boardgame/</u> <u>269171/oligotrophic</u> Coming to the Game Crafter soon! <u>https://www.thegamecrafter.com/</u>